Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging
نویسندگان
چکیده
Li-ion batteries are invaluable for portable electronics and vehicle electrification. A better knowledge of compositional variations within the electrodes during battery operation is, however, still needed to keep improving their performance. Although essential in the medical field, magnetic resonance imaging of solid paramagnetic battery materials is challenging due to the short lifetime of their signals. Here we develop the scanning image-selected in situ spectroscopy approach, using the strongest commercially available magnetic field gradient. We demonstrate the 7Li magnetic resonance spectroscopic image of a 5 mm-diameter operating battery with a resolution of 100 μm. The time-resolved image-spectra enable the visualization in situ of the displacement of lithiation fronts inside thick paramagnetic electrodes during battery operation. Such observations are critical to identify the key limiting parameters for high-capacity and fast-cycling batteries. This non-invasive technique also offers opportunities to study devices containing paramagnetic materials while operating.
منابع مشابه
The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملDemystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules
Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...
متن کاملPair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.
Lithium ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation, because of the extremely large gravimetric and volumetric capacities of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure in these systems w...
متن کاملOptimization of clinical target volume delineation using magnetic resonance spectroscopic imaging (MRSI) in 3D conformal radiotherapy of prostate cancer
Background: For the purpose of individual clinical target volume assessment in radiotherapy of prostate cancer, MRSI was used as a molecular imaging modality with MRI and CT images. Materials and Methods: The images of 20 prostate cancer patients were used in this study. The MR and MRSI images were registered with CT ones using non-rigid registration technique. The CT based planning (BP), CT/MR...
متن کامل